تاثیر ریاضی در زندگی انسان
«هیچ دانسته ی بشر را نمی توان علم نامید، مگر اینکه از طریق ریاضیّات توضیح داده شده و ثابت شود.» (لئو ناردو داوینچی)
تاثیر و کاربرد هایی که ریاضی در زندگی روزمره دارد بقدری زیاد است که حتی اشاره مختصری هم به آنها هزاران صفحه می شود و بی جهت نیست که ریاضیات در قاعده هرم علم قرار گرفته است. و تمامی علوم در بخش های بالایی این هرم واقع شده اند. همین نمودار ساده نشان می دهد که ریاضی در همه زمینه های زندگی از مهندسی و پزشکی گرفته تا معماری و حتی هنر و علوم انسانی کاربرد دارد. از این جهت تاثیری که ریاضیات در زندگی بشر دارد بقدری گسترده و وسیع است که تصور زندگی بدون ریاضی غیر ممکن است.
خوشبختانه ایران در این زمینه کارنامه درخشانی دارد و تاریخ علمی کشور ما پر از نام دانشمندان و ریاضی دانان پرآوازه ای چون خیام – خوارزمی – خواجه نصیر توسی است و کسانی چون خوارزمی پایه گذار برخی رشته های اساسی ریاضی مانند جبر بوده اند.
داتش ریاضی از زمان ارسطو و افلاطون فیثاغورث تا بحال دوره های تکامل فراونی را پشت سر گذاشته است و مبنای تمدن درخشانی که بشر پی ریزی کرده است دانش ریاضی بوده است حتی یک بنا بدون شاقول و گونیا و نخ و ربسمان محاسبات هندسی نمی تواند یک ردیف آجر را در یک دیوار بطور صحیح روی هم بچیند. حالا شما مقایسه کنید که این برج ها و آسمان خراش ها چگونه بدون دانش ریاضی قابلیت ساخت داشتند؟!
همانگونه که از هرم علم هم می توان دید بیشترین کار برد ریاضی در فیزیک است و فیزیک اساس دانش مهندسی را تشکیل می دهد و جهان کنونی ما بدون علوم مهندسی نمود خارجی پیدا نمی کرد.
وحشت از ریاضیات
متاسفانه تدریس ریاضی در مدارس جذابیت لازم را ندارد و چون آموزش و یاد گیری ریاضی نیاز به فکر کردن دارد و بشر هم بسادگی علاقه مند به فکر کردن نمی شود این است که ریاضی در بین مردم ما مهجور مانده است و شاید یکی از علل مهم عقب افتادگی جامعه هم همین گریزان بودن از یادگیری ریاضی است
در واقع از آن جهت که ریاضی بیشتر با مفاهیم انتزاعی و فرمول هایی که باید به حافظه سپرد شوند سرو کار دارد و نیاز به تمرین ها و مهارت های خسته کننده دارد مورد اقبال عوام و نیز نوباوگان قرار نمی گیرد
و در این حالت پیوند بین ریاضی و زندگی واقعی غیرممکن به نظر می رسد باید روشی جذاب را در پیش گرفت که ریاضی برای فرزندان شیرین باشد
امروزه ریاضیات با رویکرد عملی و کل نگر (مفهومی) آموزش داده می شود. برای مثال، دانش آموزان به جای آن که جدول ضرب را به حافظه بسپارند، با استفاده از چیزهایی که می توانند لمس کنند و حس کنند، شیوه های ضرب کردن را بررسی می کنند یا آنان می توانند با دوستانشان آزمایش هایی انجام دهند و ببینند سه کودک که هر کدام دو مداد در دست دارند، در مجموع شش عدد مداد به همراه دارند.
ما پدران و مادران، پیوسته از آموزگاران و رسانه ها می شنویم که خواندن مطالب جالب برای فرزندانمان چه اندازه اهمیت دارد. با وجود این، هنگامی که به ریاضی می رسیم، بسیار کم سخن می گوییم.
بنابراین، باید در پی راه هایی باشیم که آموزش ریاضیات را در منزل بسط دهیم. ما باید ریاضیات را برای فرزندانمان واقعی سازیم.
در اینجا بطور گذرا به برخی از اثراتی که ریاضی در بخش های مختلف زندگی انسان داشته است اشاره شده است:
ریاضیات و زندگی
ریاضیات انعکاس دنیای واقعی در ذهن ماست. به عقیده بعضیها:ریاضیات زیباترین زبان برای توصیف طبیعت و روابط بین پدیدههای طبیعی است. سیلوستر میگوید:”ریاضیات،مطالعه شباهتها در تفاوتها و مطالعه تفاوتها در شباهتهاست.”
علت اساسی موفقیت ریاضیدانان در آفریدن علمی به این زیبایی که عمیقترین معرفت بشری شمرده میشود:سختگیری بدون بخشش کوچکترین خطاها در کنار روش و معیارهای منطقی آنها به همراه جدیت، خلاقیت، به غایت اندیشیدن و نیز بلند پروازی و جسارت شکستن هر چه موجود است. به هر قسمت از زندگی که کنجکاوانه و با دقت بنگریم، اثر مستقیم یا غیر مستقیم ریاضیات در آن مشاهده میکنیم. نمونه آن کشف اخیر این مساله توسط دانشمندان است که:”
یکی از انواع حشرات که بر روی شاخ و برگ درختان لانه سازی میکند، روش کارش بر اساس یک فرمول پیچیده ریاضی است.” در حالت کلی ریاضیات راه های متعددی برای باز شدن فکر در اختیار ما قرار دارد که از مهمترین آنها مطالعه ی ریاضیات از جمله شاخه ی تر کیبیات است.ریاضیات این کمک را به ما می کند تا مشکلات و موضوعات زندگی را بهتر و راحت تر تجزیه و تحلیل کنیم.
آشنایی با ریاضیات حتی در زندگی زناشویی هم تاثیر دارد بطوریکه آمارهای جهانی نشان می دهد طلاق در خانواده هایی که حداقل یکی از همسران ریاضی خوانده است در مقایسه با سایر خانواده ها بسیار کمتر است!
کاربرد ریاضی در زندگی
ریاضی داستان زندگی ماست جایگزین کردن مشکلات در فرمول ها برابر با حل این مشکلات است. ریاضی علمی است بسیار شیرین و لذت بخش ولی گاه بسیار خشن و هولناک است هر گاه آدمی بتواند این معادلات و روابط و ساختارها را حل کند یک حس لطیف به آن دست می دهد ولی اگر نتواند به جواب برسد، حسی سرشار از ناراحتی و اندوه به روی دوش آدمی می گذارد.
ریاضی در صنعت
استفاده ار ریاضی برای طراحی خودرو در کارخانه های خودروسازی – هواپیماسازی – کشتی سازی و حتی دوچرخه سازی... بسیار گسترده است.
صنایع نفت و گاز و پتروشیمی و پالایشگاهها؛ مجموعه ای از پمپ ها و کمپرسورها و برج ها و رآکتورها هستند که همگی این ها با استفاده از محاسبات ریاضی طراحی و ساخته شده اند.
اثراتی که ریاضی بر زندگی بشر گذاشته از زمان انقلاب صنعتی در قرن 18 که با اختراع ماشین بخار آغاز شد شدت گرفت و این ریاضی بود که اساس ساخت و طراحی ماشین های بخار و دستگاهها صنعتی شد
الان زندگی بدون استفاده از لوازم خانگی چون ماشین لباسشویی و جارو برقی و تلویزیون و مبل و میز قاب تصور نیست و همه اینها محصولاتی است که دستاور کاربرد دانش ریاضی است.
ریاضی در کشاورزی
جدای از ماشین آلات کشاورزی که نقش اساسی را در کشاورزی مکانیزه بازی می کنند ریاضیات کشاورزی را قادر نموده است که بهره وری اقتصادی و افزایش حاصلخیزی چشمگیرتر ی داشته باشد از اندازه گیری و مقیاس گیری و وزن کردن گرفته تا علامت گذاری زمین.
یکی از استفاده های مکرر مفاهیم ریاضی در کشاورزی استفاده از تقارن و تناسب است واحدها و اندازه گیریهای مورد استفاده در کشاورزی نسبتا نامانوسند برای دیگر زمینه ها ما می توانیم از تناسب برای ایجاد گفتگو از نامانوس تا مانوس استفاده کنیم.
درک اندازه یک جریب فرنگی زمین بسیار دشوار است در یک جریب فرنگی زمین حدود 560،43 مربع قرار می گیرد. این اندکی کوچکتر از اندازه یک زمین فوتبال است، بدون محدوده پایان.
مجموعه اصطلاحات اندازه گیری دیگر زمین کشاورزی شامل مربع و بخش می شود. یک مربع 160 جریب فرنگی زمین است و یک بخش چهار مربع است. حرفه ای ها کسانی که در بالا برهای مقیاس وزن گندم کار می کنند مکررا از گفتگوها استفاده می کنند. بهای گندم معمولا با تن سنجیده می شود،اما تولید کننده ها مایلند که بها را با پک pack یا لیتر نیز بدانند. متخصصان زراعت نیاز به انجام این گفتگوها با سرعت و دقت هرچه بیشتر دارند.
برای اندازه گیری سنگینی دانه هایی چون غلات و ذرت معمولا از اصطلاح بوشل (معادل لیتر) استفاده می شود به عنوان مثال،گندم شاید 60 بوشل باشد و ممکن است جو 48 بوشل باشد. بذرها با استفاده درست و خوب از اعداد درجه بندی شده اند.
همه این نظامهای اعداد از دانه های طبقه بندی شده استفاده می کنند. این اعداد تعیین کننده بها و ارزش حبوبات هستند و به شکل قابل توجهی در دسترس تولید کنندگان و مصرف کنندگان هستند.
با نگاه به طول مربع برحسب فوت زمین و تخمین عدد سرها،کشاورزان می توانند تخمینی از محصول را بدست آورند. براورد محصول نهایی می تواند بسیار دشوار باشد و گاهی اوقات، براورد کننده گان حرفه ای خیلی اشتباه حدس می زنند.
کشاورزان همچنین عنصر زمان را نیز براورد می کنند. به شکلی تقریبی می دانند چند ساعت آنها برای دانه ها و خرمن نیاز دارند در نتیجه می توانند برنامه ریزی کنند. این براورد از زمان بر پایه نوع محصول و ماشین های در اختیار و همچنین نیروی انسانی است.
کشاورزان گزارشات قبلی از آب و هوا و شرایط رطوبت را برای تعیین زمان کاشت دانه ملاحظه می کنند.بعلاوه، کشاورزان زمان اقامت را محاسبه می کنند تا اینکه خرمن به وسیله محاسبه روزهای درجه رشد محاسبه می کنند. همه اینها نیاز به داده های هواشناسی دارد و علم هواشناسی براساس محاسبات ریاضی انجام می گیرد
این اندازه گیری واحدهای گرما با برنامه ریزی کامل شدن رشد و بلوغ کامل مورد نیاز قرار می گیرد. و همچنین برای رسیدن محصول شمرده می شود. یک تقریب از چه تعداد روز باقیمانده در حالیکه محصول آماده برداشت است تشکیل شده است. بعضی فرایندها مانند خشک کردن محصول، و تغییر عدد روزهای درجه رشد این محاسبات را را متاثر می کنند.
خرمن کوبی یک زمین جو پس از درو
کشاورزان سیستم های ریاضی و محاسباتی معادلات و نابرابری ها را برای کمک به آنها برای ایجاد تصمیمات در مورد کدام محصولها برای برنامه ریزی در کدام زمین استفاده می شود. این سیستم از سازمان بطور عادی برای برنامه ریزی خطی ارجاع شده است.
محدودیتهای کشاورزی می تواند شامل هزینه های دانه ها، زحمت و مشقت، زمان، بیمه محصول، ماشین آلات، شیمیایی /کود و غیره می باشد.تولید کننده گان چارپایان و حیوانات اهلی همچنین از برنامه ریزی خطی هنگام تهیه علوفه برای احشام استفاده می کنند.
واریته عناصر با یکدیگر برای تهیه علوفه ترکیب شده اند و تولید کنندگان خواهان مغذیترین ترکیبات از عناصری که همچنین هزینه بهره ور داشته باشند هستند. همچنین فرمولهایی که روابط بین رطوبت نسبی، زمان و حجم رطوبت که به وسیله کشاورزان برای براورد زمان خالص قبل از برداشت یونجه را نشان دهند وجود دارند.
کاربرد ارقام
در زمانهای قدیم هر قدمی که در راه پیشرفت تمدّن برداشته می-شد، بر لزوم استفاده از اعداد می افزود. اگر شخصی گله ای از گوسفندان داشت، می خواست آن را بشمرد،یا اگر می خواست معبد یا هرمی بسازد، باید می دانست که چقدر سنگ برای آن لازم دارد. اگر دارای زمین بود، می خواست آن رااندازه گیری کند. اگر قایقش را به دریا می راند، می خواست فاصله ی خود را از ساحل بداند. و بالاخره در تجارت و مبادله ی اجناس در بازارها، باید ارزش اجناس حساب می شد.هنگامی که آدمی محاسبه با ارقام را آموخت، توانست زمان، فاصله مساحت، حجم را اندازه گیری کند. با بکار بردن ارقام، انسان بردانش و تسلّط خود بر دنیای پیرامونش افزود.
کاربرد توابع و روابط بین اعداد
کاربرد روابط بین اعداد و توابع و نتیجه گیریهای منطقی در نوشتن الگوریتمها و برنامه نویسی کامپیوتری است.
مفهوم تابع یکی از مهمترین مفاهیم ریاضی است و در اصل تابع نوعی خاص از رابطه های بین دو مجموعه است. و با توجه به این که دنباله ها هم حالت خاصی از تابع است - تابعی که دامنه آن مجموعه ی اعداد {... و 2 و 1 و 0 } است - دنباله های عددی در ریاضی و کامپیوتر کاربرد فراوان دارند. برای ساخت یک برنامه اساساٌ چهار مرحله را طی می کنیم:
1) تعریف مسئله
2) طراحی حل
3) نوشتن برنامه
4) اجرای برنامه
لازم به ذکر است که گردآوری هایی که در مرحله دوم حاصل می شود را اصطلاحاٌ الگوریتم می نامیم.که این الگوریتمها به زبان شبه کد نوشته می شود، که شبیه زبان برنامه نویسی است وتبدیل آنها به زبان برنامه نویسی را برای ما بسیار ساده می کند.
کاربرد معادله و دستگاه معادلات خطی
دستگاه های معادلات خطی اغلب برای حساب کردن بهره ی ساده،پیشگویی، اقتصاد و پیدا کردن نقطه ی سر به سر به کارمی رود.
معمولاً هدف از حل کردن یک دستگاه معادلات خطی، پیدا کردن محل تقاطع دو خط می باشد.در مسائل دخل و خرج که درمشاغل مختلف وجود دارد، پیداکردن نقطه تقاطع معادلات خط یعنی همان پیدا کردن نقطه ی سر به سر.* در اقتصاد هم نقطه تقاطع معادلات خطی، عبارتست از: قیمت بازار یا نقطه ای که در آن عرضه و تقاضا با هم برابر باشند.
کاربرد تقارنها (محوری و مرکزی) و دَوَرانها
مباحث تقارنها ودورانها که به تبدیلات هندسی معروف هستند،درصنعت و ساختن وسائل و لوازم زندگی استفاده می شوند. مثلاً در بافتن قالی و برای دادن نقش و نگار به آن از تقارن استفاده می شود. در کوزه گری و سفالگری از دوران محوری استفاده می - شود. همچنین در معماریهای اسلامی اغلب از تقارنها کمک گرفته می شود. چرخ گوشت، آب میوه گیری، پنکه، ماشین تراش بادورانی که انجام می دهند، تبدیل انюی می کنند. علاوه بر آن تبدیلات هندسی برای آموزش مطالبی از ریاضی استفاده می شوند،مانند: مفهوم جمع و تفریق اعداد صحیح با استفاده از بردار انتقال موازی محور.
کاربرد مساحت
مفهوم مساحت و تکنیک محاسبه مساحت اشکال مختلف، از اهمّ مطالب هندسه است.به سبب کاربرد فراوانی که در زندگی روزمرّه مثلاً برای محاسبه ی مساحت زمینها با اَشکال مختلف. و همچنین درفیزیک و جغرافیاوسایر دروس دانستن مساحتهالازم به نظرمی رسد.
کاربرد چهار ضلعیها
شناخت چهارضلعیها و و دانستن خواص آنها، برای یادگیری مفاهیم دیگر هندسه لازم است و ضمناً در صنعت و ساخت ابزار و وسائل زندگی و همچنین برای ادامه تحصیل وهمینطور در بازار کار نیاز به دانستن خواص چهارضلعیها احساس می شود.
کاربرد خطوط موازی و تشابهات
از خطوط موازی و مخصوصاً متساوی الفاصله، در نقشه کشی و ترسیمات استفاده می شود.و در اثبات احکامی نظیر قضیه تالس1 و عکس آن، همچنین تقسیم پاره خط به قطعات متساوی یامتناسب.
تشابهات نیز از مفاهیم مهم هندسه و اساس نقشه برداری،کوچک و بزرگ کردن نقشه ها و تصاویر و عکسها می باشد.
مبحث تشابهات در هندسه دریچه ای است به توانائیهای جدید برای درک و فهم و کشف مطالب تازه ی هندسه،به همین سبب آموزش خطوط متوازی و متساوی الفاصله و مثلثهای متشابه به حد نیاز دانش آموز مقطع راهنمایی لازم است.
تالس دانشمند یونانی نشان داد که به وسیله ی سایه ی یک شیء و مقایسه ی آن با سایه ی یک خط کش می توان ارتفاع آن شیء را اندازه گرفت. با استفاده از اصولی که تالس ثابت کرد،می توان بلندی هر چیزی را حساب کرد.
تالس دانشمند یونانی نشان داد که به وسیله ی سایه ی یک شیء و مقایسه ی آن با سایه ی یک خط کش می توان ارتفاع آن شیء را اندازه گرفت. با استفاده از اصولی که تالس ثابت کرد،می توان بلندی هر چیزی را حساب کرد. تنها چیزی که نیاز دارید، یک وسیله ی ساده اندازه گیری است که می توانید آن را از یک قطعه مقوا و تکه ای چوب درست کنید.تالس در زمان خود به کمک قضیه ی خودارتفاع اهرام مصررامحاسبه کرد همچنین وقتی از مصر به یونان بازگشت، فاصله ی یک کشتی را از ساحل به کمک قضیه خود اندازه گرفت.روش دیگری هم برای محاسبه بلندی وجود دارد وآن استفاده از نسبتهای مثلثاتی است.
کاربرد آمار و میانگین
وقتی کسی از مقادیر عددی کمک می گیرد، تا یک موقعیّت را توضیح دهد، او وارد قلمرو آمار شده است. آمار معمولاً اثر تعیین کننده ای دارد. اگر چه ممکن است مفید یا گمراه کننده باشد. ما عادت کرده ایم، که پدیده های زیادی نظیرموارد زیر را با توجه به آمار، پیش بینی کنیم:
- لینک منبع
تاریخ: دوشنبه , 04 آذر 1398 (18:54)
- گزارش تخلف مطلب